

How are cumulative storm losses related?

A framework for understanding the correlation between aggregated losses of compound events

Toby P Jones, David B Stephenson & Matthew Priestley

• Storm losses from individual events large, particularly aggregated over a winter / calendar year

- Storm losses from individual events large, particularly aggregated over a winter / calendar year
- Compound events are multi hazard: wind damage and rain causing flooding.

- Storm losses from individual events large, particularly aggregated over a winter / calendar year
- Compound events are multi hazard: wind damage and rain causing flooding.
- •Can we model the relationship between these aggregate risks?

Storms Dudley, Eunice and Franklin. Source: BBC

- Storm losses from individual events large, particularly aggregated over a winter / calendar year.
- Compound events are multi hazard: wind damage and rain causing flooding.
- •Can we model the relationship between these aggregate risks?
- If so, what drives the relationship? Based on current knowledge, how may it change in the future?

Storms Dudley, Eunice and Franklin. Source: BBC

•We observe N events in a given time period (e.g year)

- We observe N events in a given time period (e.g year)
- Individual compound event i causes random losses X_i and Y_i

- We observe N events in a given time period (e.g year)
- Individual compound event *i* causes random losses *X_i* and *Y_i*
- Define relationship between X_i and Y_i to be $\theta = Cor(X, Y)$.

- We observe N events in a given time period (e.g year)
- Individual compound event *i* causes random losses *X_i* and *Y_i*
- Define relationship between X_i and Y_i to be $\theta = Cor(X, Y)$.
- Define aggregate losses over period:

$$\begin{split} S_X &= X_1 + \ \dots \ + \ \ X_N \\ S_Y &= Y_1 \ + \ \dots \ + \ \ Y_N \end{split}$$

$$\mathbf{E}[S_X] = \mathbf{E}[N]\mathbf{E}[X]$$
Wald (1945)

$$\begin{split} \mathbf{E}[S_X] &= \mathbf{E}[N]\mathbf{E}[X] \\ & \text{Wald (1945)} \end{split}$$

 $Var(S_X) = E[N]Var(X) + E[X]^2Var(N)$ Blackwell and Girschick (1947)

$$\begin{split} \mathbf{E}[S_X] &= \mathbf{E}[N]\mathbf{E}[X] \\ & \text{Wald (1945)} \end{split}$$

 $\operatorname{Var}(S_X) = \operatorname{E}[N]\operatorname{Var}(X) + \operatorname{E}[X]^2\operatorname{Var}(N)$ Blackwell and Girschick (1947)

•Can then find the covariance:

 $Cov(S_X, S_Y) = E[N]Cov(X, Y) + Var(N)E[X]E[Y]$

 $\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$

 $\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$

• θ – Correlation between X and Y

 $\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$

• θ – Correlation between X and Y

• $J_X = \frac{E(X)}{sd(X)}$ - ratio of mean to standard deviation of X (same for J_Y).

 $\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$

• θ – Correlation between X and Y

• $J_X = \frac{E(X)}{sd(X)}$ - ratio of mean to standard deviation of X (same for J_Y).

• $\phi = \frac{\operatorname{Var}(N)}{\operatorname{E}[N]}$ - dispersion statistic, measure of event clustering.

$\label{eq:product} \begin{array}{l} \bullet \mbox{Dispersion statistic influences correlation,} \\ with \lim_{\phi \to \infty} \rho = 1 \mbox{ and } \lim_{\phi \to 0} \rho = \theta. \end{array} \end{array}$

$$\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$$

Correlation increasing with clustering, showing ability to decrease first.

Theoretical Results

- $\label{eq:product} \begin{array}{l} \bullet \mbox{Dispersion statistic influences correlation,} \\ \mbox{with} \lim_{\phi \to \infty} \rho = 1 \mbox{ and} \lim_{\phi \to 0} \rho = \theta. \end{array} \end{array}$
- Correlation increases with clustering
 - (i.e $\frac{\partial \rho}{\partial \phi} > 0$) dependent on value of θ .
 - True for ~98% of the region we investigated.

Correlation increasing with clustering, showing ability to decrease first.

Theoretical Results

- $\label{eq:product} \begin{array}{l} \bullet \mbox{ Dispersion statistic influences correlation,} \\ with \lim_{\phi \to \infty} \rho = 1 \mbox{ and } \lim_{\phi \to 0} \rho = \theta. \end{array} \end{array}$
- Correlation increases with clustering
 - (i.e $\frac{\partial \rho}{\partial \phi} > 0$) dependent on value of θ .
 - True for ~98% of the region we investigated.
- Economou et al. (2015) predicted an increase in clustering of extreme storms in Europe – greater correlation between aggregate risks?

tpj201@exeter.ac.uk

$$\rho = \frac{\theta + \phi J_X J_Y}{\sqrt{(1 + \phi J_X^2)(1 + \phi J_Y^2)}}.$$

Correlation increasing with clustering, showing ability to decrease first.

Test case data

- "Test-case" using ERA5 data (1980– 2020), hourly observations over a 0.25° grid.
- • X_i is maximum value of 10m wind gusts exceedances above 20m/s from 5° radius of storm track's centre.
- Y_i is cumulative rainfall over 10mm from 10° radius of storm track's centre.
- •*N* is number of tracks passing through grid point.

tpj201@exeter.ac.uk

Illustration of storm track (black line) and it's radius of influence (red circle) with grid points affected by the storm in purple.

θ (Correlation between X and Y)

Exceedances above 20m/s & 10mm.

$\phi = Var(N)/E[N]$ Exceedances above 20m/s & 10mm.

 $J_X = E[X]/sd(X)$

Exceedances above 20m/s & 10mm.

tpj201@exeter.ac.uk

Sample correlation (top)

- Strong positive correlation over ocean
- Weaker and negative areas over land
- "Rough" with no distinct patterns

Predicted correlation (bottom)

- Captures positive ocean and weaker land correlation well
- Cannot reproduce negative values
- Picks up general trend in a smoothed way

- Extend the framework to include timevarying climate modulators.
 - e.g. dependency of storm intensity on teleconnection indices (Z).
 - Promising early work on this so far!

$\rho = \operatorname{Cor}(S_X, S_Y)$
X

- Extend the framework to include timevarying climate modulators.
 - e.g. dependency of storm intensity on teleconnection indices (Z).
 - Promising early work on this so far!
- Correlation between aggregate risk and storm frequency

$\rho = \operatorname{Cor}(S_X, S_Y)$
$\begin{pmatrix} \\ X \end{pmatrix}$ $\begin{pmatrix} \\ N \end{pmatrix}$ $\begin{pmatrix} \\ Y \end{pmatrix}$
$Z \qquad S_X \qquad \rho = \operatorname{Cor}(S_X, N)$

- Extend the framework to include timevarying climate modulators.
 - e.g. dependency of storm intensity on teleconnection indices (Z).
 - Promising early work on this so far!
- Correlation between aggregate risk and storm frequency
- Adaptation to correlation between different non-gridded locations, e.g. cities or districts

$\rho = \operatorname{Cor}(S_X, S_Y)$
X
$Z \qquad \qquad S_X \qquad \rho = \operatorname{Cor}(S_X, N)$
(N)
$\operatorname{Cor}(S_{Xi}, S_{Xj}) = ?$

- Extend the framework to include timevarying climate modulators.
 - e.g. dependency of storm intensity on teleconnection indices (Z).
 - Promising early work on this so far!
- Correlation between aggregate risk and storm frequency
- Adaptation to correlation between different non-gridded locations, e.g. cities or districts
- •Extension to other compound extremes e.g. compound dry hot events.
- tpj201@exeter.ac.uk

• More storm clustering (usually) increases correlation between aggregate risks.

Toby P. Jones, David B. Stephenson & Matthew Priestley

tpj201@exeter.ac.uk @tobyp_jones

- More storm clustering (usually) increases correlation between aggregate risks.
- Simple framework captures general ocean/land trend.

Toby P. Jones, David B. Stephenson & Matthew Priestley

tpj201@exeter.ac.uk @tobyp_jones

- More storm clustering (usually) increases correlation between aggregate risks.
- Simple framework captures general ocean/land trend.
- Future work involves changing dependency structure with promising work currently in progress.

Toby P. Jones, David B. Stephenson & Matthew Priestley

tpj201@exeter.ac.uk @tobyp_jones

- More storm clustering (usually) increases correlation between aggregate risks.
- Simple framework captures general ocean/land trend.
- Future work involves changing dependency structure with promising work currently in progress.
- Adapt framework to correlation between locations and to other compound extremes.

Toby P. Jones, David B. Stephenson & Matthew Priestley

tpj201@exeter.ac.uk @tobyp_jones

