

Windstorm losses in Europe – What to gain from damage data sets

Julia Mömken¹, Gabriele Messori², Joaquim Pinto¹

¹ Institute of Meteorology and Climate Research (IMK-TRO), Karlsruhe Institute of Technology (KIT), Germany ² Department of Earth Sciences / Centre of Natural Hazards and Disaster Science (CNDS), Uppsala University, Sweden

Different types of data sets for windstorm impacts

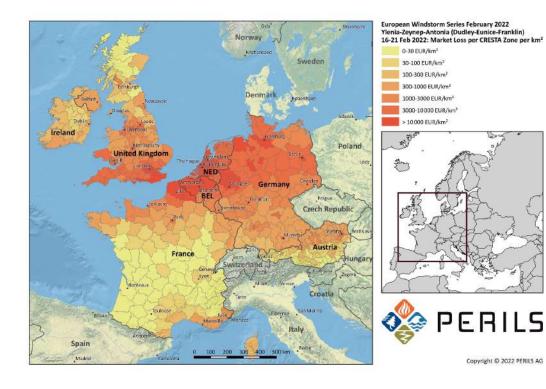
Meteorological indices

- Estimates of disaster impacts derived from meteorological variables
- E.g. Storm Severity Index (Pinto et al., 2012, Clim Res)
- Natural hazard / disaster database
 - Collection/documentation of disaster impacts/losses
 - Publicly available
 - E.g. EM-DAT, DesInventar
- Insurance data
 - Information on insured losses

Different types of data sets for windstorm impacts

NAME	ABBREVIATION	ТҮРЕ	TIME
Extreme Wind Storms Catalogue	XWS	Meteorological index	1979 – 2014
Copernicus Climate Change Service (Winter windstorm indicators)	C3S	Meteorological index	1979 - 2021
Loss Index	LI3D	Meteorological index	1999 – 2022
EM-DAT		Disaster database	1900 – present
PERILS		Insurance data	1999 – present

Insurance data – PERILS


- www.perils.org
- Availability: 1999 present

- Aggregated and anonymised data from insurance companies
 - Ultimate gross event loss per country and CRESTA zone
 - Property premium data per country
 - Exposure (sums insured) per country and CRESTA zone
 - Countries covered: Austria, Belgium, Denmark, France, Germany, Ireland, Luxembourg, Netherlands, Norway, Sweden, Switzerland, UK
- Windstorm event reported if total insured loss > 200 Mio €
 - New threshold since Sep 2022: 500 Mio € for pan-European events, 300 Mio € for individual countries

Insurance data – PERILS

Industry Loss Footprint (3rd estimate) for windstorm series Ylenia-Zeynep-Antonia in Feb 2022

Julia Mömken | IMK-TRO

Disaster database – EM-DAT

- Availability: 1900 present
- Information collected from UN agencies, NGOs, …
- Criteria for event reporting
 - 10+ people dead and/or
 - 100+ people affected and/or
 - Declaration of state of emergency and/or
 - Call for international assistance

EM-DAT The International Disaster Database Centre for research on the Epidemiology of Disasters – CRED

www.emdat.be

Disaster Classification	Location	
Select records for a specific category of disaster	Select a specific region	
 Natural Geophysical Geophysical Extreme temperature Fog Storm Convective storm Extra-tropical storm Topical cyclone Biological Biological Technological Complex Disasters 	 Asia Africa Americas Europe Southern Europe Western Europe Eastern Europe Restan Europe Russian Federation Occeania 	
from 1990 🖏 to 2022 💿	1990	2022

Meteorological – Extreme Windstorm Catalogue

- www.europeanwindstorms.org
- Roberts et al. (2014, NHESS)
- Availability: 1979 2014
- 50 most extreme storms
 - Storm tracks + footprints
 - Estimates of storm loss
- Derived from ERA-Interim

	anisations nvolved
10	Met Office
Ē	ETER
B	University of Reading
0	lational Cortra for Atmospheric Science

Extreme Wind Storms Catalogue

Database

List of storms

The original database covering 1979-2012, shown in table below, consisted of 23 storms which caused high insurance losses (referred to as <u>insurance storms</u>). The remaining 27 storms were selected because they are the top <u>inon insurance</u> storms as ranked by the storm severity index $S_{\rm ff} = Q^2 m_{\rm par} N$. (See the storm selection page for more details.)

Storms added since 2012 have been added to the same table and are indicated with a single asterlik. The criteria for adding new storms is either that they rank in the top 50 according to Sti, or they have notable insurance tosses.

Navigate to storms using the left hand buttons or click on the storm name in the table below. It's also possible to alter how these storms are sorted with the form below

Sort alphabetical (only for named storms) v

Storm	Date*	Insured loss (USD, indexed to 2012)**	Affected countries	U _{mex} ++ (ms-1)	Lowest MSLP*** (hPa)	Maximum vorticity*** (10 ⁻⁵⁻¹)	s _{lt} ***
Anatol	3/12/1999	2.6bn	Denmark, Germany and Sweden	39.86	956.05	10.98	47.01
Christian (Sf Jude)	28/10/2013	1.3br	Belgium, Denmark, Estonia, Finland, France, Germany, Ireland, Latvia, Netherlands, Norway, Russia, Sweden and United Kingdom	35.09	967.33	6.68	8.51
Dagmar (Patner)	26/12/2011	0.04bn	Finland and Norway	30.08	953.94	8.58	1.77
<u>Daria (Burns' Day</u> storm)	25/1/1990	8.2bn	Belglum, France, Germany, Netherlands and United Kingdom	37 92	948.62	11.89	48.05
Emma	29/2/2008	1.4bn	Austria, Belgium, Czech Republic, Germany, Netherlands, Poland and Switzerland	25.12	959.46	9.60	12.17
Enviro (Ganton)	8/1/2005	2.2bx)	Denmark, Ireland, Norway, Swoden and United Kingdom	39:22	059.89	9.82	36.08
Eanny	4/1/1998	NA	United Kingdom	34.60	966.23	8.30	12.30

Meteorological – Copernicus Climate Change Service (C3S)

- https://cds.climate.copernicus.eu
- Winter windstorm indicators
- Availability: 1979 2021
- Derived from ERA5
- Consider only Top50 events in period 1999 – 2021
- 21 countries covered: Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Latvia, Lithuania, Luxembourg, Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, UK

me Search		nicus tradeter tons Toolbox Suppart	INVE Climate Change Service	1	Set.
/inter v	/indstorm ir	dicators for Eu	irope from 1979 to 2021 c		
Overview	On Wednesday 3 Download data	Documentation		discontinued for urgent maintenance. Users may still be	able to submit requests, but they wi
	: (2) storm tracks		U Windstorm footprints	Summary indicators	☑ Risk Indicators
Variable Allan	a 🕐				
Time ag	gregation				
Ann	a)		C Recadal		

Meteorological – Loss Index

Pinto et al. (2012, Clim Res); Karremann et al. (2014, NHESS)

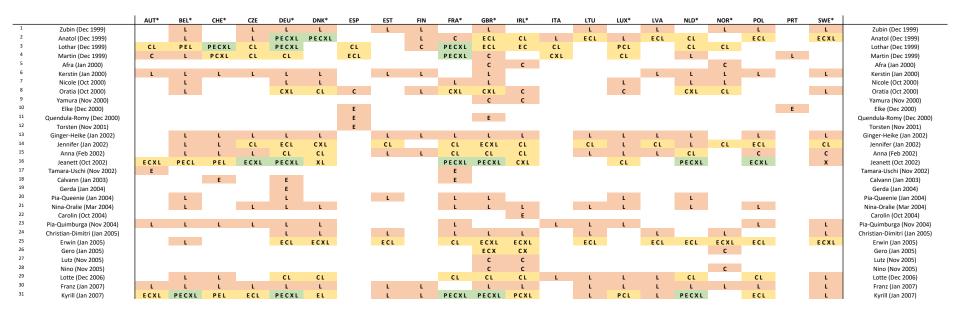
$$LI_{3D} = \sum_{ij} \left[max_{3D} \left(\frac{v_{ij}}{v_{98_{ij}}} \right) \right]^3 * POP_{ij} * I(v_{ij}, v_{98_{ij}})$$

- Derived from ERA5
- Period: 1999 2022
- Only Top50 events
- Same 21 countries as in C3S

v_{ij}: daily maximum wind speed *v_{98ij}*: 98th percentile of *v_{ij}*POP: population density

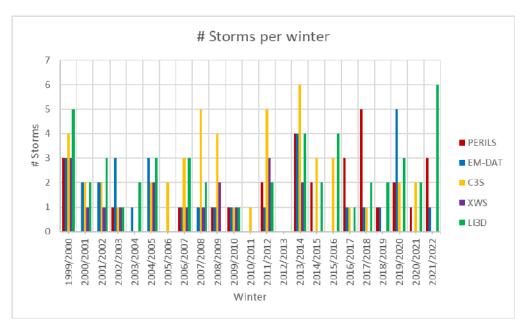
$$I(a,b) = \begin{cases} 0 \text{ for } a < b \\ 1 \text{ for } a > b \end{cases}$$

Overview of reported storms



Reported storms

- All storms in period 1999 2022
 - Only winter half year (Oct Mar)
 - Reported in at least one data set
 - Affected countries
 - 94 storms in total
- Storm names as given by Freie Universität Berlin and used by DWD
- Abbreviation of data sets
 - P: PERILSE: EM-DATC: C3SX: XWSL: Loss Index (LI3D)


Reported storms – extract

Number of storms per winter 1999 – 2022

WINTER	PERILS	EM-DAT	C3S	xws	LI3D
1999/2000	3	3	4	3	5
2000/2001	0	2	2	1	2
2001/2002	0	2	2	1	3
2002/2003	1	3	1	1	1
2003/2004	0	1	0	0	2
2004/2005	0	3	2	2	3
2005/2006	0	0	2	0	0
2006/2007	1	1	3	1	3
2007/2008	0	1	5	1	2
2008/2009	1	1	4	2	0
2009/2010	1	1	1	1	1
2010/2011	0	0	1	0	0
2011/2012	2	1	5	3	2
2012/2013	0	0	0	0	0
2013/2014	4	4	6	2	4
2014/2015	2	0	3	0	2
2015/2016	0	0	3	0	4
2016/2017	3	1	1	0	1
2017/2018	5	1	1	0	2
2018/2019	1	1	0	0	2
2019/2020	2	5	2	0	3
2020/2021	1	0	2	0	2
2021/2022	3	1	0	0	6
TOTAL	30	32	50	18	50

Comparison of data sets:

Storm ranking at European level

Ordinal ranking – all storms

- Storm ranking based on reported/estimated losses at European level
- Storms that are reported in at least two data sets
 - 37 storms in total
- EM-DAT not included (too many missing data)

rank 1-5 rank 6-10 rank 11-15 rank 16-20 rank > 20 not in data	rank 11-15 rank 16-20 rank > 20 not in data		rank 11-15	rank 6-10	rank 1-5	
--	---	--	------------	-----------	----------	--

	PERILS	C3S	xws	LISD
Anatol (Dec 1999)	4	5	3	15
Lothar (Dec 1999)	1	1	13	3
Martin (Dec 1999)	3	2	11	6
Oratia (Oct 2000)	x	6	4	21
Jennifer (Jan 2002)	x	8	9	11
Anna (Feb 2002)	x	17	х	34
Jeanett (Oct 2002)	6	9	1	2
Erwin (Jan 2005)	x	3	5	28
Gero (Jan 2005)	x	24	14	х
Lotte (Dec 2006)	x	27	х	37
Kyrill (Jan 2007)	2	4	2	1
Emma (Feb 2008)	x	28	16	8
Kirsten (Mar 2008)	x	23	х	24
Klaus (Jan 2009)	7	7	7	х
Quinten (Feb 2009)	x	36	15	х
Xynthia (Feb 2010)	8	19	8	22
Joachim (Dec 2011)	22	14	10	42
Patrick (Dec 2011)	x	26	18	х
Andrea (Jan 2012)	17	18	12	9
Christian (Oct 2013)	11	15	17	47
Xaver (Dec 2013)	12	11	6	18
Dirk (Dec 2013)	16	22	х	27
Tini (Feb 2014)	20	10	х	х
Elon-Felix (Jan 2015)	18	20	х	23
Mike-Niklas (Mar 2015)	13	х	х	14
Ruzica (Feb 2016)	x	39	x	33
Thomas (Feb 2017)	27	x	х	30
ex-Ophelia (Oct 2017)	30	12	х	х
Burglind (Jan 2018)	14	x	х	36
Friederike (Jan 2018)	9	х	х	10
Dragi-Eberhard (Mar 2019)	15	x	x	13
Sabine (Feb 2020)	10	13	x	5
Victoria (Feb 2020)	21	30	x	29
Klaus-Luis (Mar 2021)	29	x	x	41
Hendrik-Ignatz (Oct 2021)	23	x	x	25
Nadia (Jan 2022)	23	x	x	46
Ylenia-Zeynep-Antonia (Feb 2022)	5	x	x	46
nema-zeynep-Antonia (reb 2022)	PERILS	× C3S	xws	4 LI3D

Ordinal ranking – common storms

"PCXL-storms": common storms in all 4 data sets

10 storms in total

"PCL-storms": common storms in PERILS, C3S and LI3D

rank 1-3

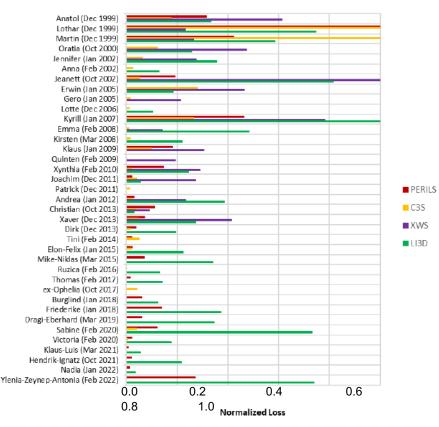
14 storms in total

a)	PERILS	C3S	XWS	LI3D
Anatol (Dec 1999)	4	4	3	6
Lothar (Dec 1999)	1	1	9	3
Martin (Dec 1999)	3	2	7	4
Jeanett (Oct 2002)	5	5	1	2
Kyrill (Jan 2007)	2	3	2	1
Xynthia (Feb 2010)	6	10	5	8
Joachim (Dec 2011)	10	7	6	9
Andrea (Jan 2012)	9	9	8	5
Christian (Oct 2013)	7	8	10	10
Xaver (Dec 2013)	8	6	4	7
	PERILS	C35	XWS	LI3D

	b)	PERILS	C3S	LI3D
	Anatol (Dec 1999)	4	4	7
	Lothar (Dec 1999)	1	1	3
	Martin (Dec 1999)	3	2	5
	Jeanett (Oct 2002)	5	5	2
	Kyrill (Jan 2007)	2	3	1
	Xynthia (Feb 2010)	6	11	9
	Joachim (Dec 2011)	14	8	13
	Andrea (Jan 2012)	11	10	6
	Christian (Oct 2013)	8	9	14
	Xaver (Dec 2013)	9	6	8
	Dirk (Dec 2013)	10	13	11
	Elon-Felix (Jan 2015)	12	12	10
	Sabine (Feb 2020)	7	7	4
rank > 10	Victoria (Feb 2020)	13	14	12
		PERILS	C3S	LI3D

me 2023 Moemken et al. (Wea Clim Extremes, under review)

rank 4-6

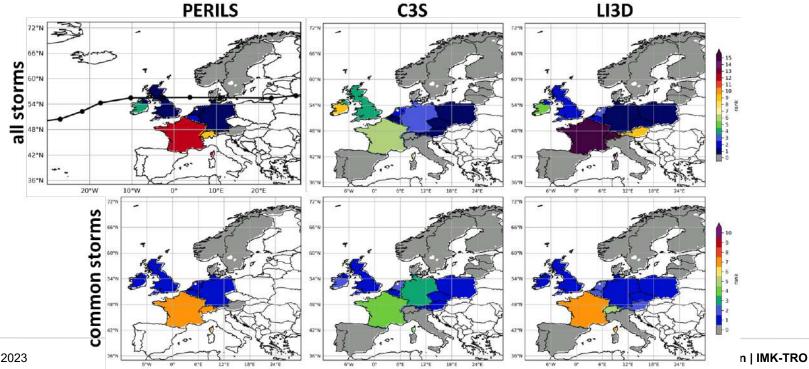

rank 7-10

Relative ranking – all storms

- Normalized losses
 - Via min-max scaling
- Storms that are reported in at least two data sets
 - 37 storms in total
- EM-DAT not included (too many missing data)

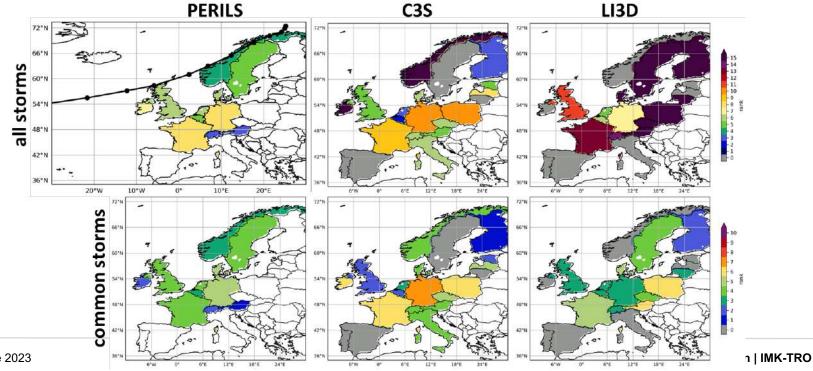
Moemken et al. (Wea Clim Extremes, under review)

Normalized Losses - All Storms


Comparison of data sets:

Case studies at country level

Case study – Kyrill (Jan 2007)


All storms vs common PCL storms

Case study – Sabine (Feb 2020)

All storms vs common PCL storms

Summary

- Data sets provide different views on windstorm impacts
- Data sets seem to better comparable in some countries than others
 - Dependent on insurance policy?
- Insurance data not solution for everything
 - Heterogeneous in space and time
- To study specific events, one needs both insurance data and meteorological perspective
- Still needed: Detailed comparison of the added value of the different datasets for impact research