Process-based ויצמן INSTITUTE OF SCIENCE classification of Mediterranean Cy dones an Upper-Level P perspective

WEIZMANN

Yonatan Givon*, Or Hess, Emmanouil Flaounas, Jennifer L. Catto, Michael Sprenger, and Shira Raveh-Rubin. **Contributions from Medcyclones COST-ACTION community**

MCs deepening mechanisms

- Adiabatic processes (PV advection)
- Diabatic heat release (precipitation)
- Release of potential baroclinic instability
- Topography (geostrophic adjustment)
- Heat low (thermals)

Dynamic classification of MCs is absent

PV Perspective - Theory

Thorncroft et al., 1993

MCs are dominated by upper-level PV patterns

From an upper-level PV perspective, are there coherent "types" of MCs?

- Cyclone features?
- Surface impact?
- Long-term trends?
- Understand predictability

Dominant MC deepening mechanisms?

MCs Data • Era5, 1979-2020

- Combined cyclone detection algorithm (Flaounas et al 2023)
- Confidence level 5
- 3190 cyclone tracks

PV Classification

- Minimum SLP time
- Cyclone-centered
- Upper-level (320-340K) PV
- SOM classification

• 9 clusters

<text>

ISRAEL

PV Clusters

- Stage A lee-low 1.
- 2. AWB+CWB low
- 3. Long-wave cut-off low
- 4. Stage B lee-low

R

8

7

6

5 PVU

4

3

2

Distinct PV patterns of MCs do exist

PV Vertical Cross Section

- Significant differences across the tropospheric column
- Diabatic
- Surface

MC deepening processes are discernable

Results: Cyclone Properties

Seasonal Distribution

- The classification is not seasonally constrained
- An artifact of absolute PV values (as opposed to PV anomalies)

Most clusters show favorable seasons

Geographical Distribution

- The classification is not geographically constrained
- An artifact of topographic influence on PV

Most clusters show favorable regions

Results: Surface Impact

2-meter Temperature Anomaly

Significance relative to total mean:

 Varying frontal structure

Different clusters are related to warm/cold anomalies

Large Scale & Convective Precipitation

Deviations from total cyclone mean:

Precipitative response varies greatly between clusters

10-meter Wind anomalies

Stormiest :
2, 4, 8
Weakest: 6, 9

Winds vary greatly between clusters

Results: Trends & Predictability

Climatological trends

Decrease (increase) in winter (summer) cyclones

UPV at cyclogenesis

20

15

10

5

0

-5

-10

-10

-5

Clusters can be determined already at cyclogenesis

Summary – dynamic PV classification of MCs

- 9 PV patterns
- Distinct geographic and seasonal distributions emerge
- Distinct surface response
- Indicative of dominant deepening mechanisms
- Opposing climatological trends

Givon, Y., Hess, O., Flaounas, E., Catto, J. L., Sprenger, M., and Raveh-Rubin, S.: Process-based classification of Mediterranean cyclones using potential vorticity, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1247, 2023.

Enhanced understanding of MC predictability (on weather & climate scales)

Cluster overview

Givon, Y., Hess, O., Flaounas, E., Catto, J. L., Sprenger, M., and Raveh-Rubin, S.: Process-based classification of Mediterranean cyclones using potential vorticity, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-1247, 2023.

Cluster	(1) Stage A lee-low	(2) AWB+CW B low	(3) Long- wave cut- off low	(4) Stage B lee-low	(5) AWB Iow	(6) Heat Iow (Sharav)	(7) Daughte r low	(8) CWB Iow	(9) Short- wave cut-off low
Season	winter	winter	spring	winter	spring/aut umn	summer	spring	autumn	summer
Genesis	Alps	Alps	Atlas	Alps	Atlas	Atlas	diverse	Alps	diverse
Peak	Ligurian Sea	diverse	Atlas	diverse	Atlas	Sahara	diverse	Ligurian sea	diverse
Cold sector	extreme	extreme	weak	strong	mild	faint	weak	mild	faint
Warm sector	faint	Weak	strong	mild	strong	extreme	extreme	mild	strong
Precip.	heavy, LS+ C-	heavy, LS+ C+	mild, LS- C-	heavy, LS+ C+	mild, LS- C-	weak, LS- C-	mild, LS- C-	heavy, LS- C+	mild, LS- C-
Mobility	fast	slow	fast	fast	average	slow	fast	slow	slow
Trend	decrease	none	increase	decrease	increase	increase	none	none	increase

Cyclone Mobility

120

240

270

330

210

- Motion of cyclone centers
- Deviation from total average
- Averaged across cyclone lifetime

Some clusters tend to be more stationary

Cyclone explosiveness sin60 (*SLP*_{t+12} - *SLP*_{t-12})

• Maximum values for each track

Bergeron =

 $\sin \phi_t$

 $Bergeron > 1 \rightarrow explosive cyclone$

24

RWB clusters tend to be more explosive

Results: Dynamic Properties

PV streamer & cutoff

WCB – Mid. troposphere

Front composites

SOM configuration

• Init. Cov.: 400

• Grid: Hexagon

Iterations: 800

• N clusters: 9

Self Organizing Map

- Nodes location corresponds to active regions and forms the SOM
- Similarity ~ MSE

SOM Neighbor Weight Distances

10-meter Wind Speed

20

20

0

0

Anomalies relative to total cyclone mean:

40

20

C

-20

40

20

0

-20

-20

-20

DVU

20

20

40

20

0

-20

-20

0

-1.5

-2

1.5

Results: 3D PV Structure

Tropopause-Surface coupling

• 2 PVU surface

• 0.5 PVU surface

"PV towers" intensify surface winds

Mobility at cyclogenesis

Topography

Topography at time 0

• Alps (1,2,4,8)

• Atlas (3,5,9)

40

20

0

-20

400

200

00

-20 -20 -20

-20

8

10000

8

20

2

0

.dbs.dllbridge

20

40

20

0

-20

-20

500

400

Topography [m]

LPV Response

Significance relative to total cyclone mean:

0

10

0

-10

-10

10

0

-10

10

-10

0

More Track Features

