

Quantifying relationships between measures of extra-tropical cyclone intensity

Joona Cornér, Clément Bouvier, Victoria Sinclair

INAR, University of Helsinki

OF FINLAND This research was supported by the Academy of Finland (grant no. 338615)

28.6.2023

CONSISTENT INTENSITY QUANTIFICATION IS NECESSARY

- Extra-tropical cyclones (ETC) cause most of the variability in weather in the mid-latitudes and can cause significant damage to infrastructure
- There is a need to consistently quantify the intensity of extra-tropical cyclones to
 - 1 describe ETCs in the current climate
 - compare ETCs between different climates (*e.g.* future projections)
 - 3 compare ETCs between reanalyses
 - 4 identify historical temporal trends

ETC INTENSITY QUANTIFICATION IS NOT STRAIGHTFORWARD

- ETC intensity can be quantified with many different measures
 - Dynamical intensity vs. impacts?
- Using only *e.g.* relative vorticity or mean sea level pressure (MSLP) is unlikely to fully describe ETC intensity
 - Weak ETC in terms of vorticity or MSLP can have significant impacts and vice versa
- What intensity measures are needed to comprehensively describe the intensity of ETCs?

43 WINTERS OF ETC TRACKS PRODUCED

- ONDJFM 1979–2022: ETC tracks in the North Atlantic and Europe
- Tracked with ERA5 3-hourly relative vorticity at 850 hPa using TRACK software
- Inclusion criteria for distance, duration, intensity and location
- In total ~7300 tracks meet the criteria

8 ETC INTENSITY MEASURES ANALYSED

- Intensity measures were analysed for each ETC around its centre
- 6 measures in a single grid point

Measure	Туре	Max distance (geodesic°)
850-hPa vorticity	Max (T42)	0 (centre)
MSLP anomaly	Nearest local min	6
850-hPa wind speed	Max	6
925-hPa wind speed	Max	6
10-m wind speed	Max	6
10-m wind gust	Max	6

8 ETC INTENSITY MEASURES ANALYSED

- Intensity measures were analysed for each ETC around its centre
- 6 measures in a single grid point
- 2 measures summed over an area

Measure	Туре	Max distance (geodesic°)
850-hPa vorticity	Max (T42)	0 (centre)
MSLP anomaly	Nearest local min	6
850-hPa wind speed	Max	6
925-hPa wind speed	Max	6
10-m wind speed	Max	6
10-m wind gust	Max	6
Storm severity index	Sum over area	10
Wind footprint	Gust > 15 m/s area	10

CORRELATION ANALYSIS USED FOR EVALUATING INTERCHANGEABILITY OF MEASURES

- For each track only the point at time of maximum vorticity was chosen for the analysis
 - Storm severity index (SSI) makes an exception: in addition to instantaneous SSI, an accumulated SSI was computed for each ETC by time-integrating instantaneous SSI over the whole track
- Correlation between intensity measures was quantified with
 - **1** Pearson correlation (linear correlation)
 - 2 Correlation from mutual information (also non-linear correlation)
- Strong correlation between intensity measures indicates redundancy

SSI AND WIND FOOTPRINT SEPARATE TRACKS

- Vorticity, MSLP and winds all have a Gaussian-like distribution
- SSI values are heavily concentrated on very small values (count shown on a logarithmic axis)
- Wind footprint's distribution is relatively flat in the middle

Quantifying ETC intensity measures / J. Cornér, C. Bouvier, V. Sinclair

MEASURES ARE CORRELATED WELL WITH EACH OTHER, EXCEPT FOR THE **SSI**S

a) Pearson correlation

- Correlation between SSIs and other measures is non-linear
- Correlation is nearly linear between other measures
- Strongest correlations between wind measures

h) Mutual information correlation

1.0

0.8

0.6

- 0.4

- 0.2

PRINCIPAL COMPONENT ANALYSIS INDICATES WHICH MEASURES ARE "IMPORTANT"

- Principal component analysis (PCA) was used for reduction of dimensions which set of intensity measures explain most of the variance in the dataset?
- Results of the PCA were used to guide Sparse PCA, which constrains the principal components to have a sparser expression
- The PCAs give each measure a weight between [-1,1] whose absolute value indicates the magnitude

PCA: FOUR FIRST COMPONENTS EXPLAIN ALMOST 97 % OF VARIANCE IN THE DATASET

- WFP: largest weight in the first two components
- SSI: weight close to zero in all components
- Difficult to interpret physically → Sparse PCA

SPARSE PCA GIVES PHYSICALLY INTERPRETABLE COMPONENTS

- All winds, WFP, VO and MSLP comprise the components, respectively
- WS850 covaries with VO and other winds
- SSI absent from all components

NAMED STORMS IN SPARSE PCA SPACE

- Non-Mediterranean European storms: Lothar, Christian, Kyrill, Xynthia, Xaver, Daria
- Mediterranean storms: Apollo, Qendresa, Andrea, Julia, Klaus
- Storm of the Century impacted North America

FOUR MEASURES CHOSEN FOR COMPREHENSIVE REPRESENTATION OF ETC INTENSITY

- 1 Wind footprint: stands out in the PCAs
- 2 850-hPa vorticity: a traditional measure of intensity which according to the PCAs is a relevant feature; interchangeable with MSLP
- 850-hPa wind speed: all wind speed measures are strongly correlated and grouped in the Sparse PCA, WS850 chosen to represent the winds because of its link to 850-hPa vorticity
- SSI (instantaneous): is not present in the PCAs but is very uncorrelated with the other measures which means it is not "interchangeable" with them

CONCLUSIONS AND PERSPECTIVES

- The aim was to investigate what intensity measures are needed to comprehensively describe ETC intensity
- A set of nine ETC intensity measures was produced and relationships between the measures quantified
- Out of the nine measures four are needed to exclusively describe a given ETC's intensity
- Next step is to use these four measures as input in a cluster analysis to produce ETC classes
 - Does the set of intensity measures produce ETC classes that are different and make physical sense?

ACKNOWLEDGEMENTS

Thank you to:

- Kevin Hodges for providing the TRACK code and helping with ETC tracking
- Benjamin Doiteau and Florian Pantillon for collaboration especially in analysing the SSI
- COST Action MedCyclones for funding Benjamin Doiteau's STSM to Helsinki
- Clément Bouvier, Victoria Sinclair and the rest of the Dynamic Meteorology group at INAR

REFERENCES

- K. I. Hodges. A General Method for Tracking Analysis and Its Application to Meteorological Data. *Monthly Weather Review*, 122(11):2573 – 2586, 1994.
- K. I. Hodges. Feature Tracking on the Unit Sphere. *Monthly Weather Review*, 123(12):3458 3465, 1995.
- K. I. Hodges. Adaptive Constraints for Feature Tracking. *Monthly Weather Review*, 127(6):1362 1373, 1999.
- Gregor C. Leckebusch, Dominik Renggli, and Uwe Ulbrich. Development and application of an objective storm severity measure for the Northeast Atlantic region. *Meteorologische Zeitschrift*, 17(5):575–587, 10 2008.

6°BEST OPTION FOR DYNAMICAL MEASURES

STORM SEVERITY INDEX IS BASED ON WIND CLIMATOLOGY

$$\mathrm{SSI}_{\mathrm{inst}} = \sum_{k} \max\left(0, \frac{v_{k}}{v_{98}} - 1\right)^{3} A_{k}$$

- Storm severity index (SSI) adapted from Leckebusch et al. (2008)
- Normalised exceedance of 10-m gust speed climatology cubed and weighted by relative area of grid point in the area within 10 degrees from ETC centre
- Accumulated SSI is produced by time-integrating the instantaneous one

Most SSI within 10°

- On average most SSI is captured within 10 °of ETC centre
- Accumulated SSI increases after 10^o- contamination from neighbouring systems

