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(Catto et	al.	2019)

How	will	the	development,	structure	and	impact	of	extreme	
extratropical	cyclones	(ETC)	change	in	a	future	warmer	climate?

How	will	the	role	of	diabatic processes change	and	feed	back	on	to	the	central	pressure?
Does	the	model resolution notably	impact	on GCM	projections?
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• Uncertainty	remains	
in	the	opposing	
influences	of	factors	
1,	2,	3,	&	4	on	ETC	
development	in	a	
warmer	climate.
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Model	setup

• Idealized	baroclinic	life	cycle	simulations
• ICON-NWP	(version	2.6.2.2)
• Model	configuration	(Keshtgar et	al.,	2023):

Limited-area,	f-plane,	aquaplanet channel	setup	(periodic	zonal	boundaries)

Domain	size 4000	km	(Lx)	x	9000km	(Ly)

Initialization Life	cycle	type	1	configuration	(Polvani and	Esler, 2007)
Relative	humidity	80%

Perturbation A	sinusoidal thermal	wave	with	1K	at	all	levels;
a	wavelength	=	Lx

Grid	spacing 80	km
(fully	physics	with	deep	
convection	scheme	activated)	

2.5	km	
(fully	physics	with	shallow	
but	not	deep	convection)
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T+4K T+4K	_RH- T+anom

Future (winters	2070-2099)−
Historical (winters	1980-2009)	
from	MPI-ESM1-2-LR,	SSP	5-8.5

qv	is	increased	to	keep	RH	same	as	CTL	
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Model	setup	– warmer	climate	scenarios
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Warmer	&	Moister	: T+anom, T+4K
Warmer:	T+4K_RH-
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80-km CTL T+anom T+4K T+4K_RH-
Diff	with	CTL

Pressure	(hPa) 942.3
(total	drop	of	
57.7	hPa)

-2 -1.5 +4.5

Time	reached 7.5	day -0.5	day 0	day +0.25	day

EKE	(MJm-2) 1.21 -0.09 -0.03 -0.03

Time	reached 8.5	day -0.5	day -0.75	day -0.75	day

• Slightly	deeper	cyclone	core	at	maturity:	central	pressure	
drops	by	2	hPa more	(total	drop	increases	by	3.4%)

• Faster development	(peak	time	hastens	by	12	hours)
• Lower spatially-integrated	EKE by	7.4%
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Cyclone	intensity
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Near-surface	impacts

• Peak-time	domain-average	precip.	increases	by	37%	
(extreme	grid-point	value	increases	by	51%)

• Peak-time	near-surface	wind	speed	increases	by	5%	
for	domain	average (7%	for	local	spatial	extreme)

• lower	precip.	in	early	time	due	to	lower	RH	but	
exceeds	CTL	at	mature	stage	(increases	by	10%)

• Almost	no	changes	in	wind	speed

T+anom,	T+4K (Warmer	&	Moister	climate)	

T+4K_RH- (Warmer	climate)	
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• 2-km	simulations	exhibit	similar	responses	to	different	
warmer	climate	scenarios.	

Near-surface	impacts
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Pressure	tendency	equation	(PTE)	analysis

Fink	et	al.	(2012)

Eq 1
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Eq 2

ITT

Horizontal	temp.	
advection

Adiabatic	cooling/warming	
due	to	vertical	motion

(Latent	heat,	radiation,	
diffusion,	turbulent	mixing)

Diagnosis	is	applied	
at	6	h	interval.
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Pressure	tendency	equation	(PTE)	analysis An	example	of	80-km	CTL	(Eq.2)
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Pressure	tendency	equation	(PTE)	analysis An	example	of	80-km	CTL	(Eq.2)

Motivation Model setup Results-overview -PTE analysis -Grid spacing sensitivity Conclusion

8

ITT TADV VMT DIAB residual

Dp TADV

…
VMT

Take	spatial	averages	
over	a	6°x6° box	around	
the	cyclone	center

Net	temp.	tendency



Time-integrated	PTE	analysis:	CTL	vs.	warmer	(&moister)	climates
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CTLà T+anom,	T+4K:

DIAB:	 -30	à -60	hPa
TADV:	-335à-365	hPa
VMT:	 290à 340	hPa

by	day	7

Change	in	DIAB	precedes	
that	in	TADV!

Central	pmin Dp Dfi EP

ITT ITT:	TADV ITT:	VMT ITT:	DIAB

Column	net	
temp.	tendency

Ascent/descent	&	
Adiabatic	cooling/	
warming	

Horizontal	temp.	
advection

Diabatic
processes
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• 2km	simulations	
exhibit	systematically	
weaker	cyclones	
(higher	central	
pressure)	than	their	
80km	counterparts.

• Supported	by	PTE:	all	
temp.	tendency	
effects	get	weaker	in	
magnitude.
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Central	pmin Dp Dfi EP

ITT ITT:	TADV ITT:	VMT ITT:	DIAB

Time-integrated	PTE	analysis:	Difference	(2km −	80km)
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250	hPa

500	hPa

850	hPa

80	km
−𝒗 D 𝜵𝒑𝑻𝒗 2 km80	km 2 km

𝑸̇
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2	km:	weaker	
diabatic

heating	near	
cyclone	center

An	example	of	major	heating	processes	in	T+anom
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Concluding	remarks

From	our	idealized	initial-value	experiments	using	ICON-NWP	model:

• ETC	develops	similarly	in	two	different	warmer	and	moister	climate	scenarios,	T+anom and	T+4K:

Development	↑ by	12	hours;	pmin ↓ by	2	hPa (marginal;	only	3%	of	total	deepening	in	CTL);	EKE	↓	by	7%.

Near-surface	impact	↑ (by	37%	&	51%	in	averaged	&	local	extreme	precipitation;	5%	&	7%	for	wind	speeds).
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Concluding	remarks
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• Contribution	to	cyclone	pressure	drop	via	pressure	tendency	equation	(PTE)	analysis:
DIAB TADV VMT

Response	to	warming &	moistening
(increase	in	magnitude	% of	CTL)

-30	hPa
(+100%)

Gradually	starts	on	day 4

-30 hPa
(+9%)
On	day	6

+50	hPa
(+17%)
On	day	6

Indirect	feedback
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• Convection-permitting	2.5km	simulations	suggest	a	potential	overestimation	for	cyclone	deepening	
(not	the	response	to	global	warming)	in	coarser-grid	GCMs.

• Future	work:	conduct	more	realistic	setup/experiments	using	historical	cases.







Cyclone	intensity



PTE	analysis	following	cyclone	tracks	with	time An	example	for	80-km	CTL

Eq 1

Eq 2
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Dp Dfi EP ITT
Column	total	Tv tendency

ITT:	TADV ITT:	VMT ITT:	DIAB residual
Horizontal	temp.	advection Diabatic processes
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PTE	analysis
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